
General Controls Patch Technical 
Information
For Programmers Only

©1995 by James W. Walker

Here is the down and dirty info about what the General Controls panel does 
to cause a conflict, and what I propose to do about it.

Among other things, the INIT resource in General Controls patches _Pack3, 
the Standard File trap.    Its purpose in doing so is to implement the control 
on the initial directory shown in directory dialogs, as shown in the lower 
right corner of the panel.

Most trap patches are of two types:

1.    A standard “head patch” leaves the original arguments and return 
address on the stack, performs some action, and jumps to the previous 
address of the trap.

2.    A standard “tail patch” calls the previous address of the trap as a 
subroutine, which involves copying the arguments, perhaps with 
modifications.    This type is easier to write in a high-level language.

The patch in General Controls is an odd hybrid.    It’s like a tail patch, in that
control returns to the patch after the original trap routine has executed, but
like a head patch, it does not make a copy of the arguments.    Here is what 
it does:    It saves the return address from the stack into a fixed location in 
its own code block, and then replaces the return address on the stack with 
an address in its code.    Then it jumps to the previous trap address.    When 
the old trap code is done, it returns to the General Controls patch, which 
does more work and returns to the address that was saved in its code block.

Now, do you see why the General Controls patch is not reentrant?    Let’s say
an application, call it WordMeister, calls StandardPutFile.    The GC patch 
saves the return address, which points to somewhere in WordMeister’s 
code.    Then, while that dialog is still displayed, you invoke an OtherMenu 
external, say Delete, that calls StandardGetFile.    The GC patch starts up 
again, and saves the return address, which points to somewhere in Delete’s 
code.    But notice that this has wiped out the return address that pointed 
into WordMeister’s code!    Thus it has planted the seeds of destruction.    
When the Delete dialog is dismissed, it correctly returns to the Delete code, 
which finishes up and returns control to WordMeister’s save dialog.    But 
when the save dialog is dismissed, the GC patch tries to return to Delete 



again, which is no longer running.

To fix this problem without actually reprogramming General Controls, my 
idea was to patch _Pack3 after General Controls, in such a way that the 
return address seen by the GC patch is always the same.    In this way, when 
the GC patch overwrites a return address with another, no harm is done.    
The return address for my patch is saved on the stack, above the 
arguments, rather than in a fixed location.

To ensure that my _Pack3 patch is installed immediately after GC’s patch, I 
add my patch as an INIT resource in the General Controls file, and change 
the old INIT resource to type 'xNIT'.    When my INIT runs, it loads and 
executes the 'xNIT' resource, then installs its patch.


